McCord CH301
unique: 49885
TTh 9:30 am - 11:00 am

Exam 4

Dec 3, 2018
Monday 7:30-9:00 PM
A - Mi in BUR 106
Mo - Z in JES A121A

Remember to refer to the Periodic Table handout that is separate from this exam copy.

NOTE: Please keep this exam copy intact (all pages still stapled including this cover page). You must turn in ALL the materials that were distributed. This means that you turn in your exam copy (name and signature included), bubble sheet, periodic table handout, and all scratch paper. Please also have your UT ID card ready to show as well.

This print-out should have 20 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

Msci 15 0201b
 0015.0 points

Which one of the following thermodynamic quantities is NOT a state function?

1. pressure
2. entropy
3. temperature
4. free energy
5. heat

First Law Simple Calc 18
 0025.0 points

WITHDRAWN

PV Work Expansion Compression
0035.0 points

Calculate the value of work when a gas-phase reaction compresses from 43.7 L to 36.3 L at 1.85 atm and constant temperature. Is work done on or by the system?

1. 1387 J , on the system
2. -1387 J, on the system
3. 13.69 J, on the system
4. 0.1351 J , by the system
5. -0.1351 J, on the system
6. 1387 J, by the system

Heating Curve Heating

0045.0 points

A 14.0 g sample of ice at $-18.0^{\circ} \mathrm{C}$ is placed on a hot plate and heated to a final temperature of $84.0^{\circ} \mathrm{C}$. Calculate the heat of this process.

1. 16.2 kJ
2. -11.0 kJ
3. 10.7 kJ
4. 10.1 kJ
5. 5.8 kJ

Thermo Work Conceptual 18
 0055.0 points

The atmospheric photochemical oxidation of nitrogen dioxide is an important contributor to rising HNO_{3} levels in coastal acid rains. To simulate the first steps of this process, you run the following reaction in a piston:
$2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NaCl}(\mathrm{s}) \rightarrow \mathrm{NOCl}(\mathrm{g})+\mathrm{NaNO}_{3}(\mathrm{~s})$
Which of the following is true regarding this reaction?

1. $\Delta U_{\mathrm{sys}}<\Delta H_{\mathrm{sys}}$
2. $\Delta U_{\mathrm{sys}}=\Delta n R T$
3. Work is done by the system
4. $\Delta U_{\mathrm{sys}}=\Delta H_{\mathrm{sys}}$
5. $\Delta U_{\mathrm{sys}}>\Delta H_{\mathrm{sys}}$

Bomb Calo Calc 18
 0065.0 points

When a 0.6890 g sample of a petroleum extract (molecular weight $=62.15 \mathrm{~g} / \mathrm{mol}$) is combusted in a rigid container, the temperature increases from $25.317^{\circ} \mathrm{C}$ to $28.918^{\circ} \mathrm{C}$. The total volume of water is 1.018 L . The sum of all hardware components of the calorimeter have a heat capacity of $1.78 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$. Calculate the internal energy of combustion for one mole of this petroleum extract.

1. $+4.416 \mathrm{~kJ} / \mathrm{mol}$
2. $-1962 \mathrm{~kJ} / \mathrm{mol}$
3. $+21.75 \mathrm{~kJ} / \mathrm{mol}$
4. $+31.56 \mathrm{~kJ} / \mathrm{mol}$
5. $-4.416 \mathrm{~kJ} / \mathrm{mol}$
6. $+6420 \mathrm{~kJ} / \mathrm{mol}$
7. $+1962 \mathrm{~kJ} / \mathrm{mol}$
8. $-21.75 \mathrm{~kJ} / \mathrm{mol}$

Enthalpy Stoich Rev Reaction 0075.0 points

The enthalpy change, ΔH, associated with the following reaction is $+81 \mathrm{~kJ} / \mathrm{mol}$ rxn.
$\mathrm{NBr}_{3}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 3 \mathrm{HOBr}(\mathrm{g})+\mathrm{NH}_{3}(\mathrm{~g})$
What is the expected enthalpy change for the reverse reaction of nine moles of HOBr and two moles of NH_{3} ?

1. -162 kJ
2. - 81 kJ
3. +243 kJ
4. -243 kJ
5. +81 kJ
6. +365 kJ
7. - 365 kJ
8. +162 kJ

ChemPrin3e T06 43
 0085.0 points

Calculate the standard reaction enthalpy for the reaction

$$
\mathrm{N}_{2} \mathrm{H}_{4}(\ell)+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

given

$$
\begin{aligned}
\mathrm{N}_{2} \mathrm{H}_{4}(\ell)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow & \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \Delta H^{\circ}=-543 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \\
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow & 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \Delta H^{\circ}=-484 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow & 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
& \Delta H^{\circ}=-92.2 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}
\end{aligned}
$$

1. $-59 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
2. $-151 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
3. $-1119 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
4. $-243 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
5. $-935 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

bond E-COClF
 0095.0 points

Chlorine monofluoride (ClF) will react with carbon monoxide (CO) to give carbonyl chlorofluoride (COClF):

$$
\mathrm{ClF}+\mathrm{CO} \longrightarrow \mathrm{COClF}
$$

Use bond energies (provided elsewhere) to estimate the change in enthalpy (ΔH) for this reaction.

1. $-193 \mathrm{~kJ} / \mathrm{mol}$
2. $-376 \mathrm{~kJ} / \mathrm{mol}$
3. $-571 \mathrm{~kJ} / \mathrm{mol}$
4. $-444 \mathrm{~kJ} / \mathrm{mol}$
5. $-298 \mathrm{~kJ} / \mathrm{mol}$

ID Formation Reaction 18 $010 \quad 5.0$ points

Which of the following is a formation reaction where $\Delta H_{\mathrm{rxn}}^{\circ}=\Delta H_{\mathrm{f}}^{\circ}$?

1. $\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})$
2. $\mathrm{Na}(\mathrm{s})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{NaCl}(\mathrm{s})$
3. $\mathrm{CO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
4. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\ell)$

Second Law Conceptual 18

 $011 \quad 5.0$ pointsMercury has a melting point substantially below room temperature $\left(-38.89^{\circ} \mathrm{C}\right)$. Which of the following is true regarding the fusion of mercury at room temperature?

$$
\text { I. } \Delta S_{\text {universe }}>0
$$

II. $\Delta S_{\text {sys }}>0$
III. $\left|\Delta S_{\text {sys }}\right|>\left|\Delta S_{\text {surr }}\right|$
IV. This physical reaction proceeds only at temperatures below $-38.89^{\circ} \mathrm{C}$

1. I and IV only
2. III and IV only
3. I only
4. II only
5. I, II, and III only
6. I, II, and IV only
7. IV only

Entropy Comparison Theoretical $012 \quad 5.0$ points
Rank the following substances by increasing absolute standard entropy $\left(S^{\circ}\right)$:

$$
\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \quad \mathrm{Al}(\mathrm{~s}) \quad \mathrm{CH}_{3} \mathrm{OH}(\ell) \quad \mathrm{CH}_{4}(\mathrm{~g}) \quad \text { 3. }-912 \mathrm{~J} / \mathrm{K}
$$

1. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{~g})<\mathrm{CH}_{4}(\mathrm{~g})<\mathrm{CH}_{3} \mathrm{OH}(\ell)<$ $\mathrm{Al}(\mathrm{s})$
2. $\mathrm{CH}_{4}(\mathrm{~g})<\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{~g})<\mathrm{CH}_{3} \mathrm{OH}(\ell)<$ $\mathrm{Al}(\mathrm{s})$
3. $\mathrm{Al}(\mathrm{s})<\mathrm{CH}_{3} \mathrm{OH}(\ell)<\mathrm{CH}_{4}(\mathrm{~g})<$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$
4. $\mathrm{Al}(\mathrm{s})<\mathrm{CH}_{4}(\mathrm{~g})<\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{~g})<$ $\mathrm{CH}_{3} \mathrm{OH}(\ell)$
5. $\mathrm{Al}(\mathrm{s})<\mathrm{CH}_{3} \mathrm{OH}(\ell)<\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{~g})<$ $\mathrm{CH}_{4}(\mathrm{~g})$

Monatomic Gas Calc dS
0135.0 points

Calculate the change in entropy (ΔS) when 13 moles of neon gas are heated from $25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ at constant pressure.

1. $+46.9 \mathrm{~J} / \mathrm{K}$
2. $+31.26 \mathrm{~J} / \mathrm{K}$
3. $+27.0 \mathrm{~kJ} / \mathrm{K}$
4. $+93.8 \mathrm{~J} / \mathrm{K}$
5. $+3.61 \mathrm{~J} / \mathrm{K}$
6. $+125 \mathrm{~J} / \mathrm{K}$
7. $+6.01 \mathrm{~J} / \mathrm{K}$
8. $+78.2 \mathrm{~J} / \mathrm{K}$

Entropy of Surroundings 18
 $014 \quad 5.0$ points

Calculate the $\Delta S_{\text {surr }}$ for the formation of iron(II) oxide at $25^{\circ} \mathrm{C}$ and 1 atm .

$$
\mathrm{Fe}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{FeO}(\mathrm{~s})
$$

1. $912 \mathrm{~J} / \mathrm{K}$
2. 10.9 J/K
3. $-10900 \mathrm{~J} / \mathrm{K}$
4. $5440 \mathrm{~J} / \mathrm{K}$
5. -10.9 J/K

Thermo Signs of Phys Rxn $015 \quad 5.0$ points

Solid arsenic will sublime when heated to $614^{\circ} \mathrm{C}$ according to the following reaction:

$$
\operatorname{As}(\mathrm{s}) \rightarrow \operatorname{As}(\mathrm{g})
$$

What are the signs of $\Delta H, \Delta S$, and ΔG for this sublimation reaction at $800^{\circ} \mathrm{C}$?

1. $\Delta H>0, \Delta S>0, \Delta G=0$
2. $\Delta H>0, \Delta S<0, \Delta G=0$
3. $\Delta H>0, \Delta S>0, \Delta G<0$
4. $\Delta H>0, \Delta S>0, \Delta G>0$
5. $\Delta H<0, \Delta S<0, \Delta G<0$

> Msci 15 1406a $016 \quad 5.0$ points

Consider the equation

$$
\mathrm{NH}_{4} \mathrm{Br}(\mathrm{~s}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HBr}(\mathrm{~g})
$$

carefully, and think about the sign of ΔS for the reaction it describes. $\Delta H=+188.3 \mathrm{~kJ}$. Which response describes the thermodynamic spontaneity of the reaction?

1. All responses are correct.
2. The reaction is spontaneous at all temperatures.
3. The reaction is spontaneous only at relatively low temperatures.
4. The reaction is spontaneous only at relatively high temperatures.
5. The reaction is not spontaneous at any temperatures.

Free Energy Generic Calc
 $017 \quad 5.0$ points

An unidentified metal, M, oxidizes at room temperature and pressure to form $\mathrm{M}_{2} \mathrm{O}_{3}$. Given the thermodynamic data provided in the table below, calculate $\Delta G_{\mathrm{f}}^{\circ}$.

Substance	$\Delta H_{\mathrm{f}}^{\circ}$ $\mathrm{kJ} / \mathrm{mol}$	S° $\mathrm{J} / \mathrm{mol} \mathrm{K}$
$\mathrm{M}(\mathrm{s})$	-	36.2
$\mathrm{O}_{2}(\mathrm{~g})$	-	205
$\mathrm{O}(\mathrm{g})$	249	161
$\mathrm{M}_{2} \mathrm{O}_{3}(\mathrm{~s})$	-653	67.8

2. $1250 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3. $653 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4. $-5430 \mathrm{~kJ} \mathrm{~mol}^{-1}$
5. $560 \mathrm{~kJ} \mathrm{~mol}^{-1}$
6. $6.1 \times 10^{6} \mathrm{~kJ} \mathrm{~mol}^{-1}$
7. $-653 \mathrm{~kJ} \mathrm{~mol}^{-1}$
8. $-1250 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Spontaneity Concept 0185.0 points

Consider a spontaneous, exothermic reaction that has a negative change in entropy. Which of the following relationships is/are true for this reaction?
I. $\Delta S_{\text {universe }}<0$
II. $\Delta H_{\text {sys }}<0$
III. $\Delta G_{\mathrm{rxn}}<0$

1. I, II, and III
2. III only

3. I and III only

4. II only
5. I only
6. II and III only

Spontaneity Conceptual $019 \quad 5.0$ points

Consider the following reaction for the oxidation of lead:

$$
\mathrm{Pb}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{PbO}_{2}(\mathrm{~s})
$$

$$
\Delta G_{\mathrm{rxn}}^{\circ}=-217 \mathrm{~kJ} / \mathrm{mol}
$$

Read each answer choice carefully and determine the single best explanation for the value of $\Delta G_{\mathrm{rxn}}^{\circ}$.

1. PbO_{2} tends to spontaneously decompose into Pb and O_{2}.
2. PbO_{2} has a lower free energy state than that of the Pb and O_{2} mixture.
3. The PbO_{2} product has a higher entropy than the combination of Pb and O_{2}.
4. As the reaction proceeds, work is done by the system to produce a lower free energy.

q and w of chemical change b $020 \quad 5.0$ points

Consider the following combustion reaction:
$2 \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}(\ell)+9 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+8 \mathrm{H}_{2} \mathrm{O}(\ell)$
Which of the following statements about q and w for this reaction is correct?

1. q and w are both are negative.
2. q and w are both zero.
3. q is negative and w is positive.
4. q is positive and w is negative.
5. q and w are both are positive.
